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Abstract

A new objective function is introduced for the optimization of the design and operation conditions in preparative
chromatography. Instead of the production rate, we propose to maximize the product of the production rate and the recovery
yield. This new objective function leads to optimum experimental conditions under which the production rate is almost as
high as it would be if only the production rate were maximized, but the recovery yield is significantly improved. The
advantages of the novel objective function are demonstrated by calculations based on both the ideal and the equilibrium--
dispersive models of chromatography. The application of this novel objective function is beneficial in isocratic overloaded
elution, in overloaded gradient elution and in displacement chromatography.
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1. Introduction

The optimization of preparative separations has
been studied on a theoretical basis by a variety of
methods [1-12]. Although the actual aim of the
optimization of a process is the achievement of the
most economical production possible, many of the
factors leading to an economical production are
external to the chromatographic process itself and are
beyond the control of chromatographers. For this
reason, the production rate has been chosen in many
publications as the objective function for the optimi-
zation of the experimental conditions under which
separations are carried out by preparative chromatog-
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raphy. The production rate can be calculated under
closed analytical form with the ideal model [1]. This
result has limited practical usefulness because the
ideal model does not account for band broadening
and cannot help in optimizing the flow-rate. A
simplified band broadening model [2] allows the
extension of the results obtained with the ideal model
to more realistic situations and the inclusion in the
optimization process of experimental parameters
such as the mobile phase velocity and the pressure
drop which can be taken into account by the ideal
model.

The use of the numerical solutions of a more
comprehensive model for the optimization of the
experimental conditions is the most realistic ap-
proach because it makes it possible to take into
account any significant contribution to band broaden-
ing, whether it originates from axial dispersion or
from mass transfer resistances. Several investigations
taking into account a different number of the ex-
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perimental parameters that are optimized simultan-
eously [3-12] have been published. In most cases,
the result is obtained by applying a sequential
simplex algorithm and by using the production rate
as the objective function. This is a reasonable choice
because maximizing the production rate is equivalent
to minimizing the capital cost of the hardware
required to perform a separation. Other objective
functions are possible, however, since the production
cost has two other important components, the oper-
ating costs and the lost feed [7,13,14]. So, mini-
mizing the amount of solvent required to produce the
unit amount of purified compound under a given set
of experimental conditions allows the minimization
of operation costs. Felinger and Guiochon [7] have
considered the latter approach. It has been shown
that this is, in many cases of practical importance,
the major contribution to this cost [13]. Accordingly,
we have used solvent consumption as an objective
function to be minimized. We have also combined
the solvent consumption and the production rate into
a new objective function and determined the op-
timum experimental conditions for hybrid cases
when both production rate and solvent saving are
important.

However, the maximum production rate is often
found at experimental conditions for which the
recovery yield is unacceptably small. This happens
particularly when the separation factor is rather
small. In this case, a constrained optimization with a
minimum threshold on the recovery yield (e.g. a
yield larger than 90%) has been used so far.

2. Theory

The determination of the optimum experimental
conditions can be made by means of either the ideal
or the equilibrium—dispersive model. The ideal
model has the advantage of supplying the thermo-
dynamic limit, an estimate of the highest production
rate and recovery yield allowed. These values could
be achieved only with a column of infinite efficiency.
In the case of a binary separation, the ideal model
allows the calculation in algebraic form of all the
attributes of the band profiles, except for the re-
tention time of the shock of the less retained
component of the pair. The optimum experimental

conditions have been reported previously for both
components [1].

The production rate is the amount of product
recovered during the unit time using a column of unit
cross-sectional area’.

0
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Pr= (1)
The loading factor is the amount of sample injected
compared to the amount of sample which would be
needed to saturate the column (i.e., in the case of the
Langmuir isotherm, to fill completely the adsorbed
monolayer).
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The recovery yield reported by Golshan-Shirazi and
Guiochon [1] for the more retained component is
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where r, is the positive root of the following
equation

b,Cor* —[a — 1+ b,(C) = CDIr—b,C7 =0 (4)

x is calculated from the required degree of pumy of
the more retained component, Pu,

YLtk 5)
ar Pu,

When the band profiles of the two components
overlap, the production rate of the more retained
component is

*Note that this definition differs slightly from the definition used

in Ref. [1], as the cross-sectional area of the column is not
considered in the previous definition of the production rate.
Furthermore, in our calculations, identical column saturation
capacities were assumed for the two components. Consequently,
the equations differ slightly.
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Pr, = (1+r /a)b,t. 1 —x

(6)

The production rate in Eq. (6) is derived with a cycle
time defined as equal to the corrected analytical
retention time of the second component. This defini-
tion is somewhat arbitrary but is the most convenient
for isocratic overloaded elution [1]. Another option
for defining the cycle time is the time elapsed
between the emergence of the first component and
the disappearance of the second one [4-7]. In
displacement and gradient elution chromatography,
however, the column requires regeneration and
reequilibration after each run. Another definition of
the cycle time, taking the time required for these
operations into account is needed. For this reason,
we must make an estimate of the amount of washing
required. Assuming that six column volumes of
solvent are needed to regenerate the column, the
cycle time will be defined as the analytical retention
time of the more retained component plus six times
the void time.

I,=1g, + 61, =1k, +7) €

With this definition, the maximum production rate
becomes

uok, I:(ar—l)/(x]2

b= 0 Tab,k L 1—x

(8

This maximum production rate is reached when the
two bands just touch each other. It remains constant
when the loading factor is increased further. The
general expression for production rate at any load is
thus

Pr,=

“uké[i: 1 @ — /a7
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Similar calculations can be carried out for the
optimization of the production rate of the less
retained. component. For the sake of simplicity, we
assume that 100% purity of the collected fraction is
required (which is possible with the ideal model but
is not with other models nor in actual practice). In

this case, the recovery yield of the less retained
component is [1]:

Y, =

Ly = (ta — Dia)
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(10)

With the definition of the cycle time given above, the
production rate of this component is

ugl, | Ylké

Pri =+ )

(1D

The optimum conditions for the purification of the
less and the more retained component are entirely
different. Because of the displacement effect, the
intensity of which increases with increasing loading
factor for the second component, the maximum
production rate of the less retained component
cannot be observed except by using values of the
loading factor which are so high that the recovery
yield becomes unacceptably poor. The production
rate of the more retained component reaches a
plateau when touching bands takes place, or for a
value of the loading factor slightly higher, with little
band overlap, depending on the purity requirements.

Because of this phenomenon, the numerical meth-
od of optimization, based on the calculation of
solutions of the equilibrium—dispersive model, is
cumbersome in many instances. The surface of the
objective function is rather flat. Some improvement
could be observed by defining a cycle time that
depends on the loading factor [4-7]). However,
except at very high separation factors, high recovery
yield can only be reached by constraining the
optimization by introducing a minimum yield, usual-
ly set at 90%. Instead of maximizing the production
rate with or without a yield constraint, the simulta-
neous maximization of both the production rate and
the recovery yield looks advantageous. A convenient
way to achieve this goal is to choose an objective
function which is the product of the production rate
and the recovery yield. The new objective function
can be expressed by the following equations when
the ideal model is assumed.
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for the less retained component. Egs. (12,13) are the
solutions of the ideal model. If we use these two
objective functions for the optimization of the ex-
perimental conditions in preparative chromatog-
raphy, we will find optimum conditions under which
the production rate is somewhat lower than it would
be if the production rate itself were the objective
function, but the recovery yield will be much higher.

3. Results and discussion

Calculations were carried out by means of both the
ideal and the equilibrium—dispersive model of chro-
matography, in order to determine the optimum
conditions, using the functions defined in Eqgs.
(12,13) as the objective function. When the ideal
model was used, the production rates of the more
and the less retained components were calculated by
Egs. (9,11), respectively. The recovery yield was
calculated by Eqgs. (3,10), respectively. Solutions of
other models can be calculated numerically. This
calculation is easy using algorithms previously dis-
cussed [15].

3.1. Optimization with the ideal model

Fig. 1 and Fig. 2 show the resuits calculated with
the ideal model, by the above equations, at a
separation factor a=1.2, a retention factor k; =2,
injected concentrations C}=100 mg/ml and Cy=
300 mg/ml. The values of the b parameters of the
Langmuir isotherm were chosen to ensure a g, =260
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Fig. 1. Plot of the calculated production rate, recovery yield and
their product for the less retained component against the loading
factor, based on the ideal model. a=1.2; k;=2; C‘,’= 100 mg/ml;
C3=300 mg/ml; ¢, =260 mg/ml.

mg/ml saturation capacity for both components.
When the purification of the more retained com-
ponent (Fig. 2) is optimized, the recovery yield is
100% until the bands of the two components touch
each other. The production rate increases linearly
with increasing value of the loading factor. When the
two bands begin to overlap, the recovery yield
begins to decrease with increasing value of L,,,
while the production rate remains constant. Choosing
the product of these two quantities as a new objec-
tive function, we observe a sharp maximum at the
loading factor where overlap begins. The yicld
achieved is 100% and the production rate is maxi-
mum, an itdeal situation.
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Fig. 2. Same as Fig. 1, except calculations were made for the more
retained component.
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On the other hand, when we optimize the sepa-
ration of the less retained component (Fig. 1), the
ideal model fails to identify an optimum value of the
loading factor for maximum production rate. The
production rate increases monotonously with increas-
ing loading factor, while the recovery yield decreases
with increasing value of L., beyond the value at
which touching bands is reached. With the new
objective function we are able to find an optimum
value of the loading factor, although the maximum is
very flat in most instances. With the current values of
the parameters (see Fig. 1), the optimum loading
factor is at L., =14%, where the recovery yield of
this component is 64%.

Fig. 3 shows plots of the new objective function
for the first component versus its loading factor at
a=1.5 (instead of 1.2 in Figs. 1 and 2) and at
different values of the retention factor of between
one and six. When the separation factor is not small,
the ideal model predicts the existence of a relatively
sharp maximum of the new objective function for the
less retained component at tolerable experimental
conditions. The recovery yield at the optimum is
smaller than it is for the more retained component,
but it is still approximately 75% in the whole range
of retention factors studied. Note that it has been
shown in a previous publication that the optimum
conditions for the maximum production rate were at
low values of the retention factor [5,6]. Fig. 3 shows
that this is also true for the new objective function.
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L¢)=17.8%: Y,=753%
L¢,=18.3%; Y,=749%
K'3=5; Ly ,=18.6%; Y,=74.6%
K3=6; L¢1=18.9%; Y, =74.3%
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Fig. 3. Plot of the novel objective function against the loading
factor. Calculations for the less retained component on the basis of
the ideal model. a=1.5; C'=100 mg/ml; C5=100 mg/ml;
q, =260 mg/ml.

3.2. Optimization with the equilibrium—dispersive
model

Further calculations were carried out using band
profiles obtained by numerical integration of the
equilibrium—dispersive model. Previous results sug-
gested that the optimum conditions are determined
essentially by the values of the loading factor and the
column efficiency [7]. Accordingly, the optimization
was carried out by finding, with a sequential simplex
routine, the optimum value of these two experimen-
tal parameters maximizing the new objective func-
tion.

3.2.1. Overloaded isocratic elution

The optimization of the experimental conditions
for the purification of a 1:1 mixture (C}=C3=100
mg/ml) was studied at a separation factor «=1.2, in
overloaded isocratic elution. The left-hand chromato-
grams in Fig. 4 and Fig. 5 show the band profiles
obtained under the optimum conditions for the
maximum production rate of the less retained (Fig.
4) and the more retained (Fig. 5) component. In both
cases, there is a considerable degree of overlap of the
two bands, the mixed zone is very important and the
recovery yield is rather poor. This is especially true
for the more retained component because of the
important tag-along effect. The displacement effect

14b | L=129%, Y=43.0%, Pr=0.0994

C (mg/mL)

~6.5%, Y=73.4%, Pr=0.0805

80 100 120 10 160 180

time (s}
Fig. 4. Optimum separations calculated by the equilibrium-disper-
sive model for isocratic overloaded elution for the purification of
the less retained component. The production rate (left) and the
product of the production rate and the recovery yield (right) were
maximized, respectively. a=1.2; k| =2; C'=100 mg/ml; C;=
100 mg/ml.
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Fig. 5. Same as Fig. 4, except calculations were made for the more
retained component.

allows a higher loading factor for the purification of
the first component and leads to a higher recovery
yield. The chromatograms on the right-hand side of
Figs. 4 and 5 were obtained for the optimum
separation when the product of the production rate
and recovery yield is maximized instead of the
production rate. Obviously, since this objective
function is weighed equally by production rate and
recovery yield, the optimum loading factor is smaller
for both components than in the previous case and
the recovery yield is significantly higher. The im-
provement is particularly spectacular in the case of
the more retained component, where the loading
factor is almost three times lower, and the yield, at
90.3%, is more than three times higher than it had
been previously. A recovery yield above 90% is
usually considered as satisfactory. The considerable
improvement in the recovery yield is achieved at the
cost of a 20% reduction of the production rate.
Depending on the economics of the process, one of
the two options may be chosen or an intermediate set
of conditions may be preferred.

It has been shown previously that the columns
should be operated at the highest possible flow-rate
in order to achieve maximum production rate [5~7].
This is a serious inconvenience since high flow-rates
mean high pressure drop and, to a large extent,
significant dilution. When the novel objective func-
tion is used, the required column efficiency is
slightly higher than when it is the production rate.
This demands for the use of smaller particles at
constant column length. Consequently, the linear

LEOOO00o
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Fig. 6. Plot of the production rate of the less retained component
against the loading factor and plate number. a=12; k| =2;
€' =100 mg/m}; C=100 mg/ml.

velocity of the mobile phase will be smaller at the
same pressure drop. For this reason, the cycle times
are longer when the novel objective function is used.
This leads to smaller values of the production rate.
However, the decrease of the production rate remains
modest due to the improvement of the recovery
yield.

Fig. 6 illustrates the shift of the position of the
optimum experimental conditions for the first com-
ponent when the production rate is replaced by the
new objective function for the optimization. The
maximum production rate is at point A, while the
product of the production rate and the recovery yield
reaches its maximum at point B. The contour lines
clearly show that, while the optimum experimental
conditions are markedly shifted, the production rate
is hardly lower at the new optimum. On the other
hand, Fig. 7 demonstrates how considerably the

Fig. 7. Same as Fig. 6, except that the recovery yield is plotted.
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Pr, Y,

0.06

Fig. 8. Same as Fig. 6, except that the product of the production
rate and the recovery yield is plotted.

recovery yield is improved when the experimental
conditions are shifted from point A to point B.
Finally, Fig. 8 shows that the surface determined by
the novel objective function exhibits a well defined
maximum, which makes the numerical optimization
stable. By contrast, Fig. 6 shows that there is no
maximum, or a very poorly defined one, for the
production rate.

This property of the two surfaces and the corre-
sponding functions, Pr and PrY, is still more im-
portant for the optimization of the production of the
more retained component. Fig. 9 shows that the
production rate of the second component reaches a
flat plateau at high loading factors, as forecasted by
the ideal model. This feature of the surface makes
the numerical optimization very problematic. It
causes the optimization program to locate the op-
timum conditions at values of the loading factor
which are too high, under conditions for which the

0.06

Fig. 9. Same as Fig. 6, except that calculations were made for the
more retained component.
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Fig. 10. Same as Fig. 7, except that calculations were made for the
more retained component.

recovery yield is unsatisfactory and the result of the
optimization somewhat meaningless. In the case of
the second component as in that of the first one, the
optimum is being significantly shifted with the
introduction of the novel objective function, from
point A to point B (Fig. 9). The drop in the
production rate is still smaller than in the case of the
less retained component. Fig. 10 illustrates the
significant improvement in the recovery yield. The
sharp maximum of the new objective function is
shown in Fig. 11.

As illustrated in the previous figures, there are
major differences between the behavior of the two
components. One of the most noteworthy is in the
nature of the shift of the experimental conditions
from one objective function to the other (i.e., from
point A to point B). In the case of the less retained
component, the column efficiency is just about 9%

Fig. 11. Same as Fig. 8, except that calculations were made for the
more retained component.
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higher at point B than at point A. The improved
yield is only due to the reduced value of the loading
factor. On the contrary, the purification of the more
retained component requires a markedly more effi-
cient column (almost twice as efficient in the case in
point) and the loading factor is considerably reduced.

3.2.2. Overloaded gradient elution

The novel objective function was successfully
applied to the optimization of overloaded gradient
elution chromatography. Fig. 12 compares the chro-
matograms obtained under the optimum conditions
given by the two objective functions (Pr and PrY)
for the purification of the more retained component
of a binary mixture of relative concentration 1:3. The
separation factor was a=1.2, the retention factor at
the initial mobile phase composition was k= 10, the
gradient steepness was G =0.5. The chromatogram
on the left-hand side (LHS) of the figure corresponds
to maximum production rate, the one on the right-
hand side (RHS) to the maximum product of the
recovery yield and the production rate.

In spite of the strong gradient steepness, both
objective functions give values of the optimum
loading factor and of the recovery yield achieved
under optimum conditions which are very similar in
isocratic and in gradient elution. At the maximum
production rate, the recovery yield is only 31.7%.
With the novel objective function, the optimum

6 , .
I L=6.5%; Y=31.7%, Pr=0.143
|

5

L=2.8%; Y=89.3%, Pr=0.121

C (mg/mL)
w
— e

50 60 70 80 90 100 110 120

time (s}

Fig. 12. Optimum separations calculated by the equilibrium-
dispersive model for gradient overloaded elution for the purifica-
tion of the more retained component. The production rate (left)
and the product of the production rate and the recovery yield
(right) were maximized, respectively. a=1.2; k, =10, G=0.5;
C{=100 mg/ml; C}=300 mg/ml.

loading factor is 57% smaller but the recovery yield
is almost 90%. The optimum experimental condi-
tions found by the two methods are quite different,
but the production rate is only 15% smaller with the
new objective function. The amount of pure fraction
collected during each run is much higher with the
novel objective function due to the improved yield.
The production rate is smaller because the new
optimum is achieved at a higher column efficiency,
i.e. for a smaller linear velocity, which increases the
cycle time.

3.2.3. Displacement chromatography

The novel objective function was also tested in
displacement chromatography. Fig. 13 compares the
chromatograms obtained under the optimum con-
ditions given by the two methods, maximum pro-
duction rate (LHS) and maximum product of pro-
duction rate and recovery yield (RHS), for the
separation of a 1:3 binary mixture at a separation
factor a=1.2. The retention factor of the less
retained component was k; =2 (close to the optimum
value for maximum production rate). These chro-
matograms correspond to an optimized purification
of the more retained component. The shift of the
optimum conditions is quite similar to those that we
have observed earlier in both isocratic and gradient
overloaded elution. At the maximum production rate
(see the chromatogram on the left side in Fig. 13),

45

Li=7.0%; Y,=23.9%, Pr=0.0766 L=2.8%; Y;,=62.4%, Pr=0.0498

40 r
35+
30

25

C (mg/mL)

20

BO 100 120 140 160 180 200

time (s)

Fig. 13. Optimum separations calculated by the equilibrium-
dispersive model for displacement chromatography for the purifi-
cation of the more retained component. The production rate (left)
and the product of the production rate and the recovery yield
(right) were maximized, respectively. a=1.2; k|=2; C|=100
mg/ml; C5=300 mg/ml.
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the recovery yield is rather poor, only about 24%.
When the product of the production rate and the
recovery yield is maximized instead (see chromato-
gram on the right-hand side), the optimum loading
factor is 2.5 times smaller, but the recovery yield is
2.6 times higher. Although the production rate is
decreased by 35% when switching to the new
objective function, the amount of pure product
obtained during one run is higher, as seen in Fig. 13
from the area between the two vertical lines indicat-
ing the cut points.

4. Conclusions

The optimization of the experimental conditions
can be solved successfully by using the product of
the production rate and the recovery yield as an
objective function to be maximized. Calculations
made with the ideal model show that for the purifica-
tion of the more retained component, the optimum
loading factor is reached when the two bands just
touch each other, at 100% recovery yield. The
optimum conditions cannot be determined for the
purification of the less retained component by means
of the ideal model when the production rate is
maximized. When the new objective function is used,
however, the optimum loading factor can be de-
termined both for the more and the less retained
component. The recovery yield is around 70-80% at
the optimum loading factor, depending on the other
parameters of the separation. Such experimental
conditions are usually acceptable.

These results are confirmed by calculations based
on the use of the equilibrium—dispersive model, in
isocratic and gradient elution, as well as in displace-
ment chromatography. This model and the ideal
model give a similar value of the recovery yield
under optimum experimental conditions for the
extraction of the first component. The recovery yield
of the more retained component is usually around
90%, in both isocratic and gradient elution. In the
displacement mode the yield is somewhat smaller,
but it is still much higher than the one achieved
without considering the value of the recovery yield
in the objective function. When the yield is taken
into account in the objective function, the optimum
experimental conditions shift towards much smaller

values of the loading factor and higher column
efficiency (particularly in the case of the more
retained component), but the loss of production rate
is minor compared to the gain in recovery yield.
The loss of production rate is important only at
very small separation factors. Eq. (12) indicates that
the maximum of the new objective functions is
approximately proportional to the fourth power of
(e—1)/a, while the maximum production rate is
proportional to the second power of that expression.
This, however, is the price to pay to achieve high
values of the recovery yield at small separation
factors. Preliminary calculations based on the
equilibrivm~dispersive model in gradient elution
chromatography confirm this finding [8]. Although
no systematic calculations have been carried out, we
note that the production loss is about twice as large
in displacement chromatography as it is in elution or
gradient elution (cf. Figs. 4 and 5,12 and 13).

5. Glossary of symbols
b coefficient of the Langmuir isotherm, cm’/mg

C° mobile phase concentration of the solute in-
jected, mg/cm3

k' retention factor at infinite dilution
L column length, cm
L, loading factor

Pr  production rate, mg/cm’/s
Pu  purity of the collected fraction

r variable in Eq. (4)

S column cross-sectional area, cm”
t,  void time of the column, s

t, cycle time, s

t,  retention time

u, linear velocity of the mobile phase, cm/s
V., volume injected

X auxiliary parameter (Eq. (5))

Y recovery yield

o separation factor

£ porosity of the column packing
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